

High-Performance Computing

Lecture 1: Introduction

Me

● Thomas Fogal
– “Tom”, please

– thomas.fogal@uni-due.de

Others

● Rainer Schlönvoigt
– rainer.schloeni@gmail.com

● Prof. Dr. Jens Krüger
– jens.krueger@uni-due.de

mailto:rainer.schloeni@gmail.com

I don't know you.

● Picture on moodle?
● Matrikelnummer on moodle?

HiWis? Masters / Research?

● Our groups' focus
● Ace the class.

Course Organization

● 1 part N-Body, 1 part Final Project
– Grading weights? 70/30 30/70?

● Clusters, MPI, OpenMP
– CUDA/OpenACC/OpenCL off-topic

● Language choice: C, C++, Fortran 90+. GNU.
– C intro?

● Groups
– 1 or 2

Course Goals

● Common language
● Software engineering, practicals
● HPC: theory && practice

– Distributed memory systems, MPI
– Memory wall. NUMA
– Shared memory, threading, OpenMP
– Filesystems, I/O
– Load balancing

– Profiling and scalability

● 'Research' / final project

“Plan”

1. Intro, n-body, Linux essentials

2. Distributed memory

3. Particle Vis?

4. Distributed Filesystems

5. MPI File I/O

6. Shared memory

7. Memory access, t/s consistency

8. Scalability, profiling

9. Useful/general parallel algorithms

10. Future clusters

Assignments

● 5 or 6 total
– Couple of weeks each

– Build on each other
● Live with your code!

● Groups
– 2 or 1 students

– Tell me before next class

● No sharing code!

Grading / Concerns

● Homework, grading issues: talk to Rainer
● Course issues: talk to me
● Escalate:

– Rainer, myself, Jens, DUE administration

Assumptions

● Know an imperative language
– Read C

● Do your homework
● Ask Questions

Practicals / Recommendations

● Use C.
● Code locally, test on Cray

– Don't waste CPU hours.

– VM if you need it

Simulation Overview

Example Simulation Scenarios

● Molecular dynamics
● MHD
● Stress simulation (safety verification)
● Fluid flow
● Weather forecasting

Simulation Cycle

1. idea/theory/model

2. discretize domain

3. encode math into calculation

4. run simulation

5. verify result / explore data

1.See our SciVis course :-)

6. GOTO 1

Parallel Simulation

● Reduce time to solution
● More nodes → more memory

Supercomputing

● Vector machines
– Modern vector: SSE, Altivec

● beowulf

Parallelization

● Hard.
– Race conditions

– Coordination

– Performance!

● How?
– Automatic parallelization?

– Threads?

– MPI
● System assigns procIDs → processors!

Threads

● Task-based parallelism
● For data parallelism?

Message Passing Interface

● Independent processes, different data
– SPMD

● Each process has assigned ID
● Explicit synchronization
● Explicit memory transfer

Output

● Distributed file systems
– GFS, GoogleFS (GFS..), Hadoop FS, Lustre,

(NFS?)

● Usage patterns
– Dump memory to disk (checkpoint)

– Data arrays

– Appends (log files)

Input

● Disk → memory (restart)
● Configuration

– Derived from visualizing the data :-)

● Analysis / statistics

N-Body Problem

Newtonian Gravity

● F1 = F2 = G (m1m2)/r2

Many Particles

Summation of Forces

Vector Addition

Vector Addition

+ + + +

+ +

= F

Particle Force Summation

mi pi=G∑
j=1

N−1

(m jmi(p j−pi))/∣p j−pi∣
3

G=6.67×10−11 N (
m
kg

)
2

Practicals

● How large is T?

Linux Essentials

Terminal

$ _

$ cmd1
$ cmd2

Output

$ cmd
cmd's output
more output
$

Canceling Commands

$./a.out^C
$

Navigation

$ cd directory
$ cd ..
$ ls
$ pwd

Compiling

$ gcc -Wall -Werror -ggdb3 file.c

Wall: turn on all warnings

Werror: warnings are errors

ggdb3: debug symbols on

O3: heavy optimization

Debugging

$ gdb -q ./a.out

(gdb) run

…

^C

(gdb) bt

(gdb) list

Valgrind

$ valgrind --leak-check=full
--track-origins=yes
--leak-resolution=high
--show-reachable=yes ./a.out ...

