
HPC Lecture Notes
Simulation and the N-Body Problem

Thomas Fogal

October 4, 2013

1 Administrative

• Two components to course: N-Body stuff, and final project (research).

• Choice of grading weights: choice of 30–70% N-Body stuff, with the rest as final project.
What do students want?

• CUDA is great! Not here. Next semester :-)

• Language choice: C, C++, Fortran 90+. Students want a ‘C’ crash course?

• Give overview of course content. Course goals.

– Active course! Software engineering goal.

2 Simulation

Simulation is the process of imitating some real process on a computer. This involves
creating a mathematical model of the process of interest, and solving that model given a set
of initial conditions. The simulation is then used to model the system and understand
what its state will be at some future point of time.

Simulations are used in basically any science that exists today. Weather simulations
attempt to predict such values as temperatures and precipitation at a particular time. Sim-
ulations are used in the design of engines to estimate and evaluate their efficacy. Similarly,
simulations are used to determine ideal fuel mixing ratios. The movie industry simulates
the transport of light to develop the Hollywood blockbusters we watch. Network simulations
estimating packet flow are used to improve network architectures. Stress simulations ensure
building designs will be safe when acted on by external forces (e.g., an earthquake).

In some cases, it is possible to solve a model analytically. Unfortunately, such cases are
rather limited in scope, and frequently are too simplified to answer questions of interest. Thus
we rely on numerical solutions, which approximate the system using numerical integration.
The resolution or fidelity of numerical solutions is the accuracy implied by the method of

1

solution; an entire discipline has developed which specifically addresses accuracy in numerical
approximations.

The basic lifecycle of a simulation consists of input, subdivision of work and load balanc-
ing, advancing the state of the system (often, ‘timestepping’), and output of intermediate
and ending states. Each of these components can be very complex on their own, and are
frequently intertwined. For example, a spatial subdivisioning often effects which data are
loaded on which processes. We will talk about each of them in turn over the course of the
semester.

3 High-Performance Computing

The desire for increased fidelity and the simulation of larger systems has fueled the field of
high-performance computing (HPC). As people realized that a single processor and
machine just does not have enough resources to solve a model in the desired timeframe,
we have increasingly turned towards parallelism to increase performance. Using multi-
ple processors in concert enables higher-resolution simulations, but requires extra work in
synchronizing and getting the processors to work together on the problem.

At first, supercomputers were developed by companies pushing unique architectures that
were especially suited to massive parallelism. Such machines boasted special SIMD (‘single
instruction, multiple data’) instructions for performing operations on multiple elements at
once1.

Modern day supercomputing can be traced to more humble beginnings, however. Be-
owulf clusters emerged from a group at NASA that needed more computational power.
Supercomputers put out by Cray and the like were expensive. To circumvent the cost issue,
the group at NASA took a set of everyday workstations running Free software and connected
them with off-the-shelf networking technology. The result was a cluster that could be bought
at a standard electronics store; the cost savings due to mass production of the materials is
enormous. Beowulf enabled a much wider set of users for high-performance computing than
was previously possible.

Modern supercomputers have certainly changed, but they maintain many of the same
characteristics as the original Beowulf design: distributed memory (separate machines), free
software, and primarily off-the-shelf processing and networking hardware.

One of the aspects that has changed, especially in the last 5 years, is the rise of multi-
scale parallelism by way of shared memory. Supercomputers now are universally composed
of a set of multiprocessors instead of uniprocessors, and this trend continues as so-called
‘manycore’ accelerators become commonplace. Exploiting the parallelism at both scales is
critical for obtaining good performance, as you will see during this course.

1A modern example of SIMD instructions are Intel’s SSE instructions; indeed, ‘SSE’ stands for ‘Streaming
SIMD Extensions’

2

4 N-Body Problem

The N-Body problem is a classic problem in high-performance computing. It simulates how
a set of different bodies move in space given their gravitational attraction to one another,
based on Newton’s classical mechanics. One example of initial values for this problem is the
current configuration of planets in the milky way: if the simulation is correct, the simulation
can predict the planetary configuration at any future point in time. However, one can also
see that this problem quickly becomes intractable: adding the moons, stars, and asteroids
of our galaxy makes the system considerably more computationally complex, and if we start
to consider multiple galaxies ...

In this course, we use the N-Body problem for the sole reason that it is easy to explain
and implement. The focus of this course is high-performance computing. We will give you
enough information on the problem to be able to implement it, but we stop there; there
are much more intelligent ways to do this. We encourage you to keep your implementations
simple, especially at the start of the semester.

The mathematics for classical Newtonian gravitation is given by Equation 1

F1 = F2 = G
m1m2

r2
(1)

where F represents a force, G is Newton’s gravitational constant (∼ 6.674×10−11N(m/kg)2),
m is the mass of a particle, and r represents the distance between the two bodies. We are
uninterested in Force, per se, but rather only a particle’s acceleration. However, of course
F is equivalent to ma, and so we can obtain the acceleration simply by dividing by the
mass. With the acceleration we can modify the velocity, and given a constant velocity and
a length of time, we can compute a particle’s new position from it’s old position. In an
N -Body simulation, we sum up the effect on a particle’s acceleration by all other particles,
a la Equation 2.

mi
~~pi = G

N−1∑
j=i

mjmi(pj − pi)
|pj − pi|3

(2)

Here ~~p represents the acceleration of point p; other symbols are the same. Equation 2 gives
the new acceleration for the i’th point; note that in a real simulation, we need to calculate
Equation 2 N times!

4.1 Timestepping

Once we have obtained the acceleration for each particle, we apply that to each particle’s
velocity. With the velocity, we can finally advect the particle, but: how much? Over what
time period should we assume the particle’s velocity is constant?

Selecting this time period intelligently involves a lot of math, and can change the entire
logic for summing up the forces. It has a huge effect on the running time (likely more effective
than all of the methods we will learn about in this course), but is beyond the scope of this
class.

3

Thus: for now / in this course, just use:

∆ti = δ ×min(
1

|~pi|
,

1√
|~~pi|

) (3)

where |~x| is the vector norm of ~x, and δ is a normalization factor—a constant ∈ [0, 1].
Note that this ∆ti is per-particle, but for practical reasons one normally computes ∆t to be
the minimum of all ∆ti’s and then uses ∆t for all particles.

5 A Preview of Things to Come

write this.

4

