Informatik und Angewandte Kognitionswissenschaft

Lehrstuhl fiir Hochleistungsrechnen

pos— Rainer Schlonvoigt
Thomas Fogal

Prof. Dr. Jens Kriiger

High-Performance Computing
http://hpc.uni-duisburg-essen.de/teaching/wt2013/pp-nbody.html
.

10 MINUTES LATER

wie

PROGRAMMING IN A NUTSHELL

i -
ad
MAN, I'LL NEVER
FIGURE THIS BUG ¢
oUT.

Map, ILL NEVER W)
FIGURE THIS BUG
ouT.

10 MINUTES LATER

THREEPANELSDUL.com matihew boyd - Eam mecanville

Exercise 4 (90-210 Points)

1 “Choose your own adventure”

The final project is your choice! We have talked about many aspects of
high-performance computing, mostly centering on data organization and
communication. In the coming weeks we will discuss topics such as scalability,
floating point issues, 10, sequential /temporal consistency and the memory
wall. Of course, there are many topics in parallelism and high-performance
computing that we simply will not have time to discuss. This is your chance
to bring all of these aspects together as well as pursue something that you
wish we covered in the course.


http://hpc.uni-duisburg-essen.de/teaching/wt2013/pp-nbody.html

You must propose your own work for the final project. I give a few ideas
below to start you off, but I hope you will create your own project or at least
propose a minor variant on something below.

Your proposals are due by January 30th. I need to receive something in
writing about what you will do by that time. This does not need to be a
shining example of great writing, and can even be just a page of bullet points
that outline what you want to do; there just needs to be something written
that we agree on. I highly encourage you to discuss your project ideas with
me informally beforehand. If your proposal is rejected, you will lose time
figuring out details when you could be working on the assignment. Extensions
will not be given due to inability to agree on a proposal.

Think big. This is the capstone project for the entire course. You have
more time for it than other assignments. Changing 6 lines of your existing
simulation and doing a run is not a good final project. To get full credit, you
should propose something where you will have to learn something new, in
addition to applying knowledge gained from the previous assignments. Try
to ‘wow’ me.

Your assignment does not need to have anything to do with n-body
simulations, and you are not required to use any of your old code. You may
also work in groups, but there must be a very clear delineation of work so
that grades can be individually assigned. Such projects should naturally be
more complex than standalone projects.

Some aspects you should consider when you think about your project are:

e Do I already understand the basic approach I will need?

Can this be implemented in the amount of time available?

What can someone see at the end—how could this be evaluated?

Are there good resources available for learning more?

You get to choose how important this project is to your grade. Your
proposal must also include the number of points the assignment will be worth.
This number cannot be less than 30% of the total course grade, nor can it
exceed 50%.

Projects will be due on March 21st, 2014.



2 Project Ideas

2.1 Barnes-Hut acceleration

In n-body simulations with many particles, it often turns out that a large
set of particles group together. If we are looking at the force on any one
particular particle, then, it will mainly be influenced by the particles in its
‘local group’. Particles in distant groups or just distant particles alone will
have very little impact on a particle’s trajectory.

Some smart people realized this long before us, of course, and decided to
take advantage of this fact to accelerate the computation. Those people were
Josh Barnes and Piet Hut, and the result is the ‘Barnes-Hut’ algorithm:

https://de.wikipedia.org/wiki/Barnes—-Hut—-Algorithmus

The basic idea is to impose a tree on the domain. The tree will group
particles which are ‘close’; each node will represent some region of space,
with leaves containing particles, and internal nodes representing groups of
particles which are close together. When computing the acceleration on any
given particle, one then traverses the tree as deep as makes sense—comparing
the particle’s position to the region of space that the current node of the tree
represents—and accumulates acceleration as normal. When accumulating
from an internal node, one uses the averages of all the particles in that region.

Your task is to implement the Barnes-Hut algorithm in your n-body
simulation, and characterize the performance improvement.

Warning: this is a ‘data structures’-heavy task. If you have never
implemented a tree before, be wary, and if you have significant trouble with
pointers, be very wary.

2.2 Conway’s Game of Life

In 1970 John Conway simplified an idea originally given by John von Neumann
and single-handedly invented the field of cellular automata. The “game” he
proposed was actually a simulation in which the “player” (I use these terms
loosely) has control over only the initial state.

The game is played on a grid of cells. Each cell has binary state: it is
either ‘on’ or ‘oft’, sometimes referred to as ‘alive’ or ‘dead’. Every successive
iteration of the simulation proceeds by the following rules:

e if the cell is ‘alive’:


https://de.wikipedia.org/wiki/Barnes-Hut-Algorithmus

— if it has < 1 ‘alive’ neighbors, that cell dies.
— if it has > 4 ‘alive’ neighbors, that cell dies.

— if it has 2 or 3 neighbors, it lives to the next iteration.

e if the cell is ‘dead”
— if it has exactly 3 ‘alive’ neighbors, it becomes ‘alive’.

Expressed in pseudo-code, the rules are something like this:

for y from 0 to dims[0]:
for x from 0 to dims[1]:
switch (live_neighbors (grid[x,vy])):
case 0:

case 1: kill(grid[x,y]); break;

case 2:

case 3:
if (deadp (grid[x,y])) { raise(grid[x,yl); }
break;

default:
if (alivep(grid[x,y])) { kill(grid[x,yl); }

Listing 1: Conway’s game of life.

Your task is to write a simulation which takes an initial state and an
iteration number, and outputs the state of the system after the given number
of iterations. For the edge cases where x, y lie off of the defined grid, consider
them to always be ‘dead’.

Of course, you need to accelerate this by doing it in parallel. To do this,
you will need to give every process a portion of the grid which it is ‘responsible’
for. Of course, calculating 1ive _neighbors is difficult at the boundaries of
grids: the current process does not know the status of neighboring processes’
grid cells. You will need to communicate to exchange this information.

2.3 Steady state relaxation

In many engineering disciplines, one is interested with identifying the ‘steady
state’ of a system given an initial state. As a very simple example: if we drop
a ball from some height, it falls and eventually hits the ground. For some
period of time, it may bounce and roll around a bit, but eventually the ball
comes to rest and will not move until we apply some new external force to it.
In this situation, the initial state is where we dropped the ball from and the
steady state is the final resting location of the ball.

One common application of this idea is to identify the final tempera-
ture of a given region, given an initial state and boundary conditions. An

4



Jemet ]
08
07
06
05

e
04
03
0z
o1

R X =1

Figure 1: Heat transfer problem example. At the bottom, where ¢« = X, the
boundary has a constant high heat (1.0). The heat dissipates to neighboring
areas and eventually reaches a steady state like the one depicted here. On
the right side, a grid is overlayed on the domain; simulations calculate the
temperature at each grid point.

example boundary condition might be that the left side of the simulation
domain remains at a constant 100°C. The solution would be the temperature
distribution when things stabilize.

The mathematics for solving such a system can be as simple as averaging
adjacent grid points. If we consider a 2D case, we take the domain and
discretize it by choosing where to place grid points, as in the right side of
Figure 1. Let’s refer to the field on the left side as U, and the discretized
version (on right) as u. Then we might speak of u at a particular grid point
(z,y), thus: u,,. With this notation the evolution of this steady state problem
is simply:

e Uy 1yt Upigy+ Uy g T UL (1)
T,y 4
where u™ represents u at timestep n.

To solve such a problem, we initialize all the grid points of u, set n = 0,
and then solve for n + 1 everywhere. u! then becomes the input to solve for
u?, etc. The process continues until u'*! is so close to u’ that there is, for all
practical purposes, no real difference. Of course, there are issues at the grid
boundaries: if (z — 1) is —1, then we will at some point ask for the value at
u_1,, which is invalid. In Figure 1, the boundary conditions are: if v = X
and y = —1, then 0.1. Otherwise, 0.0.

Your task is to create a parallel solver for such heat problems. As in the
cellular automata (game of life) example, you will need to assign sets of grid
points to different processors and exchange information at boundaries. The
output would be a file which contains the temperature at every grid point.




2.4 Visualization

Earlier, I provided a script which will take one of your output CSV files
and create a rudimentary visualization using ParaView. These visualizations
are enough for you as a simulation author to see what is happening, but
ultimately not very satisfying—in part due to their simplicity.

In this project, your task is to create more compelling visualizations,
using considerably more particles and timesteps. You will perform some
sort of ‘interesting’ simulation run: perhaps setting up particles in the same
formation as bodies in our solar system, or as just a random ‘galaxy’ that
you invent and think is interesting. Then you will run your simulation to
produce a number of CSVs to use for creating a visualization. The end result
should be a movie which depicts the evolution of the simulation run you put
together.

Your proposal should include at least two aspects: some aspect of paral-
lelism, either in your simulation or by using ParaView in parallel, and some
method(s| to improve the visualizations. Consider how color and transparency
might help, for example, or lines for particle trajectories, etc.

3 sine qua non

Assignments are due at midnight on the due date.

The proposals need only be a single file. They should be in some sort of
document format that can be portably read, such as a plain text file or a
PDF. Upload your document to Moodle.

Your final code must include a Makefile for compiling. Assignments
which do not compile will receive 0 points.

Your assignment will be graded on the duecray.uni-due.de super-
computer. It does not matter if your program runs correctly on another
machine; it must run correctly on duecray to receive credit.


https://moodle2.uni-due.de/course/view.php?id=2945
https://www.gnu.org/software/make/manual/make.html

	``Choose your own adventure''
	Project Ideas
	Barnes-Hut acceleration
	Conway's Game of Life
	Steady state relaxation
	Visualization

	sine qua non

