
Informatik und Angewandte Kognitionswissenschaft
Lehrstuhl für Hochleistungsrechnen

Rainer Schlönvoigt
Thomas Fogal

Prof. Dr. Jens Krüger

High-Performance Computing
http://hpc.uni-duisburg-essen.de/teaching/wt2013/pp-nbody.html

Exercise 3 (60 Points)

All assignments are to be uploaded to Moodle. Assignments are due at
midnight on the due date. No late assignments will be accepted.

All assignments must include a Makefile for compiling your assignments.
The assignment specification should include what the default target of your
makefile should be. Assignments which do not compile will receive 0 points.
Sometimes, we provide sample inputs and outputs; assignments which do not
satisfy these test inputs will receive very few points.

Please do not include additional output other than what was requested
by the assignment details. Hint: if you want more debugging output, use a
‘debug’ flag in your program’s arguments and have it only print when that flag
is active.

Your assignment will be graded on the duecray.uni-due.de super-
computer. It does not matter if your program runs correctly on another
machine; it must run correctly on duecray to receive credit.

1 Scalability

We have attempted to parallelize our n-body simulations along two different
axes now: MPI (distributed memory parallelism) and OpenMP (shared
memory parallelism). Now it is time to see how well these performance
‘improvements’ have worked.

1

http://hpc.uni-duisburg-essen.de/teaching/wt2013/pp-nbody.html
https://moodle2.uni-due.de/course/view.php?id=2945
https://www.gnu.org/software/make/manual/make.html

Figure 1: Strong scalability of a parallel rendering application. The application
was run in 4 different ‘modes’ using the same dataset, and those timings were
combined to create this chart.

In this assignment, you will measure and improve the scalability of your
simulation code. Scalability is the changing performance of a parallel program
as it utilizes more resources. Of course, the reasons we turn to parallelize
simulations in the first place are one or both of:

1. We want to simulate models of similar complexity, but faster, or

2. we want to run larger or more accurate models.

we call these aspects of scalability strong scaling and weak scaling. Strong
scaling is identifying how a program gets faster for a fixed problem size. That
is, we have the same problem, but we run it with more and more processors,
and we hope/expect that it will compute its result faster. Figure 1 depicts a
strong scaling study1. Weak scaling speaks to the latter point: how effectively
can we increase the size of the problem we are dealing with? In a weak
scaling study, each processor has the same amount of work, which means that
running on more processors increases the total size of the simulation.

The broad task in this assignment is to optimize your n-body simulation
so that it scales better. To do this effectively, you must first the establish
the baseline scaling characteristics of your simulation. Afterwards, you can
modify your program to improve scalability. Your existing benchmarks can
then be used to verify the increase in performance. To keep things simple, we
will limit ourselves to strong scaling for this assignment.

This assignment is split into 2 parts, with differing deadlines! In the first
part, you need only measure the scalability of your code. In the second, you

1From http://www.sci.utah.edu/˜brownlee/gluray.pdf

2

http://www.sci.utah.edu/~brownlee/gluray.pdf

will use this information and the scripts you have written in order to improve
your application’s scalability.

Part 1 will be due on Tuesday, January 14th. Part 2 will be due on
January 28th.

2 Part 1: Establishing Scalability

You will establish the scalability of your code on two fronts: strong scalability
and weak scalability. To do this you will need to perform a number of runs,
and extract the execution time for each run.

In principle, all that needs to be done is to run the program multiple
times, changing the -np argument to mpirun each time. Such a study could
be as simple as the following bash for loop:

for procs in 1 2 4 8 16 32 64 ; do
time mpirun -np ${procs} ./my-program ./the-input

done

Listing 1: How to run a strong scaling study.

of course, a real study would need some way to capture the performance
of each of those runs. Furthermore, running on duecray.uni-due.de is
more complicated due to the job submission system (i.e. PBS/qsub).

2.1 Scripting

You must script your job executions, so that you can quickly measure scala-
bility. You will be making many small changes to your code in the second
part of the assignment, and it is important to be able to quickly ascertain
which version of the code is faster. For this part of the assignment, you will
implement two scripts: a strong scaling script, and a weak scaling script.

2.1.1 The Bourne-Again SH ell (bash)

I recommend you use the language of your shell, bash. There are many
tutorials online for you to learn from; a couple seemingly good ones are:

• http://tldp.org/HOWTO/Bash-Prog-Intro-HOWTO.html. Your
fearless leader started with this tutorial, way back in the good ol’ days.

3

http://tldp.org/HOWTO/Bash-Prog-Intro-HOWTO.html

• http://wiki.ubuntuusers.de/Shell/Bash-Skripting-Guide_
f%C3%BCr_Anf%C3%A4nger. This is in your native language, which
you might prefer.

If you would like to delve deeper, the O’Reilly book “Learning the Bash
Shell”2 is also quite good.

Below you will find details on what, exactly, your script should do, and
examples are given using bash syntax. You are free to use any scripting
language which is available on duecray, however.

2.2 Strong scaling

Your script should run a strong scaling study. The script should take 2
arguments: the path and name of a binary to execute, and the name of an
input file. It should perform multiples runs of the given binary with the given
input file (varying the number of processors), collect the execution time for
every run, and output those execution times to a file.

To be clear, calling the script in a form such as:

$ bash strong-scaling.sh /path/to/my/nbody /path/to/particles.txt

should create a number of jobs on the cluster, in which each job runs:

/path/to/my/nbody /path/to/particles.txt

except that the number of processors used each time varies.
Your script must run on duecray, which uses qsub/aprun to execute

jobs. However, you probably run locally with just mpirun or mpiexec.
Your script may optionally take a third argument, which changes which mode
it uses to submit jobs.

Your script must provide help information on how to run it. If the first
argument is ‘-h’, then the script should print out usage information and then
exit. An example is given in Listing 2.

$ bash scaling.sh -h
Usage: scaling.sh /path/to/binary /path/to/input [mpirun]

binary the program to run
input the input file to give as argument to the binary
mpirun submit runs with ’mpirun’ instead of qsub/aprun

Listing 2: Sample script ‘help’ output.

2http://shop.oreilly.com/product/9781565923478.do

4

http://wiki.ubuntuusers.de/Shell/Bash-Skripting-Guide_f%C3%BCr_Anf%C3%A4nger
http://wiki.ubuntuusers.de/Shell/Bash-Skripting-Guide_f%C3%BCr_Anf%C3%A4nger
http://shop.oreilly.com/product/9781565923478.do

The output of the script should be a text file with each line representing
the performance at the given number of processors. You must include a
‘reasonable’ set of runs. Listing 3 gives a sample output file; the first column
is the number of processors and the second column gives the runtime3.
1 560.1325
4 140.0331
8 70.0166

16 35.0083
24 23.3389
48 11.6694
96 5.8347

Listing 3: Output format of strong scaling script. This represents 7 runs
from a strong scaling study.

I recommend the following stages for implementing this script:

1. create a script which writes a .pbs file for execution on a single
processor.

2. Modify the script to generate n .pbs files, with each iteration using a
different number of processors.

3. Add the qsub command after creating the files and ensure the jobs
execute through the queue system acceptably.

4. Create some way to uniquely identify the performance of each run.

5. Collate all the performance metrics into a single file.

In what follows I give details/recommendations on UNIX tools and script-
ing approaches you can use to implement your assignment.

2.2.1 Creating .pbs files

To create the .pbs file, you can use standard shell redirection with a feature
of cat that allows you to write a block of text into a file.
#!/bin/bash
cat > fname <<EOF
#PBS -n job-name
#PBS -l mppwidth=42
#PBS ...
EOF

Listing 4: Bash file creation example.

3You may include additional columns—for example, if you wanted to differentiate
between number of MPI processors and number of OpenMP processors.

5

2.2.2 Generate n .pbs files

This will require a for loop over the number of processors, as detailed in
Listing 1. Furthermore, you will need to change the number of processors in
each iteration. Using the cat idiom above, you can simply insert variable
references:

#!/bin/bash
meaning=42
cat > abc <<END
The meaning of life is ${meaning}.
END

will create a file abc with the contents

The meaning of life is 42.

2.2.3 Ensure the jobs run through the queue system

Add qsub into your scripts. Test to make sure it ‘works’. You should get
output files for every run you submit. Use qstat and qstat -a to watch
the queue after your script executes, and make sure your jobs (eventually)
get executed.

2.2.4 Uniquely identify performance

There is a lot of flexibility here. One solution is to modify your job submission
script to include the performance information in the (standard) output file.

1. Change the .pbs files you generate so that each run generates unique
output files (“#PBS -o ...”). You could do this by, for example,
using the number of processors as part of the filename.

2. Use date +%s to identify the current time. Identify the current time
both before and after you run your program.

See the date man page for more information.
Another solution is to modify your simulation to measure the time and

have it output this information in some way: either to a specially-named file,
or to standard output on rank 0.

6

http://unixhelp.ed.ac.uk/CGI/man-cgi?date

2.2.5 Collate performance numbers

This depends on how you have uniquely output the performance numbers.
One problem is waiting until all the jobs are finished: qsub returns instantly,
but the job may not run until (much) later. So if you try to instantly collate
the performance metrics at the end of your script, much or all of the data
may not be available yet!

One solution is to put the collation algorithm into a separate script. You
can then submit your collation script as a ‘job’ to run, and use PBS to force
it to run later. For details, see:

http://beige.ucs.indiana.edu/I590/node45.html
but the gist of it is to save each qsub execution jobID and make your

collation script depend on it. z.B.:

job1=$(qsub 1procs.sh)
job2=$(qsub 2procs.sh)
job3=$(qsub 4procs.sh)
qsub -W depend=afterok:${job1}:${job2}:${job3} collate.sh

Listing 5: Using PBS job dependencies.

Now the queueing system itself will make sure collate.sh does not run
until all of 1procs.sh, 2procs.sh, and 4procs.sh have completed.

2.3 Submission

As always, you submission should be a single (optionally compressed) tarball.
The tarball should extract all files into a single subdirectory. In the tarball
you should include:

• Your simulation’s source code.

• A makefile to compile your code.

• Any and all scripts to measure the strong scalability of your code.

• A graph (image!) which depicts the scalability of your code (i.e. some-
thing similar to Figure 1).

You will not be graded on the scalability of your code for this portion of
the assignment—do not worry if your program is slower with more processors.

As always, submit your tarball on Moodle.

7

http://beige.ucs.indiana.edu/I590/node45.html
https://en.wikipedia.org/wiki/Tar_(file_format)
https://moodle2.uni-due.de/course/view.php?id=2945

3 Part 2: Competition

In the second part of the assignment, you will use your script to improve the
performance of your simulations. Your programs will be pitted together on
the performance battlefield, with the best-performing program author taking
home two glorious rewards:

1. the highest grade possible on the assignment, and

2. bragging rights.

Your submission will include information detailing to what extent your
efforts have improved the performance of your program, in the form of a
scalability graph.

In this stage, you should submit a tarball with:

• Your simulation’s source code.

• A makefile to compile your code.

• Any and all scripts to measure the strong scalability of your code.

• One or more graphs (images) which depict the strong scalability of your
code both before and after you have improved performance.

Make sure the program still works correctly after you optimize any aspect.
Programs which do not generate the correct answers after your efforts will not
receive points for improved performance, and will not be considered for the
competition. I will provide a program which is the standard for correctness.

As always, submit your tarball on Moodle.

4 Grading details

The grading on this assignment is meant to encourage some friendly competi-
tion. First, I will emphasize that the majority of the points on this assignment
are completely independent. Second, there is a fallback so that you can get
100% credit without regard to your peers’ efforts.

The grading rubric is summarized in Table 1. In the first part of the
assignment, you will measure and present your programs scalability: this is

8

https://moodle2.uni-due.de/course/view.php?id=2945

Aspect Points available Evaluated From
Independent grading

Correctly measuring/presenting scalability 10 Part 1
Simulation correctness 30 Part 2
Improved performance 5 Part 2

Competitive grading
Performance 15 Part 2

Table 1: Grading breakdown for this assignment.

worth 10 points. In the second part of the assignment, you must submit a
correct simulation—which you should already have—and demonstrate that
you have improved the performance in some way. If your simulation is not
already giving the correct answers, this should be your first priority.

To receive the final 15 points, your best bet is to meet the performance
of a program I will provide. This program uses all the high-performance
knowledge we have learned in class, as well as knowledge about the programs’
environment. There are no ‘tricks’ to the performance of this program, beyond
what has been given in class or publicly available in the documentation for
the tools we have used in this course. However, I will not directly describe
how this program works. Hints will be given to enterprising students4.

The other option to ensure you get all of the final 15 points is to beat your
peers. The fastest program will receive full credit. Other programs receive
some percentage of the 15 points, depending on how closely they match the
fastest program’s performance. For example, if the fastest program requires
100 seconds, and your program is 30% slower (i.e. it takes 130 seconds for
the same problem), then you receive 70% of the credit—10.5 points5.

For the purposes of this competition, the program I provide cannot be
the ‘fastest program’.

5 Increased Resources

To aid in scalability testing, your cluster walltimes have been increased to 30
minutes, and you can run on up to 96 cores. These increased allocations will

4i.e., you need to ask.
5Moodle does not allow fractional points. We will round as per the normal rules of

math: ≥ .5 rounds up, < .5 rounds down.

9

continue for the duration of the assignment.
Be aware that this makes your jobs more contentious! While you are

probably used to running on 24 cores instantly, this may not be the case
anymore when you try to enqueue a 96-core job. “I could not get enough
cores to effectively run my benchmarks” is not a valid excuse—start early.

6 Extras: isolating performance problems

It can be useful to be able to evaluate MPI scalability and the OpenMP
scalability separately: this will help you narrow down which parts of your
code are the major inhibitors to good scalability. Here I outline some tricks
you can use to change which aspects you measure. You are not required to
implement these for your strong scaling script, but they will be useful in the
second half of the assignment.

6.0.1 OpenMP

You can effectively disable OpenMP by setting both the environment vari-
ables OMP NUM THREADS and OMP THREAD LIMIT to 1 before you run your
program (note you do not need to recompile your program). This can allow
you to isolate MPI-specific performance issues from OpenMP ones.

6.0.2 MPI

Removing MPI is a bit harder. I recommend creating a special command line
option, perhaps “-serial”, and creating wrappers around all of the MPI
functions. You can then disable them if the command line option is given.
Listing 6 demonstrates this approach. You can either run this program as:
‘mpirun -np 9 ./a.out’ or you could run ‘./a.out -serial’.

#include <stdbool.h>
#include <string.h>
#include <stdio.h>
#include <mpi.h>

/* should we utilize MPI or not? */
static bool mpi = true;

static int
par_init(int* argc, char*** argv) {

if(mpi) {
return MPI_Init(argc, argv);

}
return 0;

}
static int par_finalize() { return mpi ? MPI_Finalize() : 0; }
static size_t

10

par_rank()
{

if(!mpi) { return 0; }
int rank=-1;
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
return (size_t)rank;

}
static size_t
par_size()
{

if(!mpi) { return 1; }
int sz=-1;
MPI_Comm_size(MPI_COMM_WORLD, &sz);
return (size_t)sz;

}
int
par_barrier()
{

return mpi && MPI_Barrier(MPI_COMM_WORLD);
}
int
par_bcast(void* buffer, int count, MPI_Datatype dt)
{

if(mpi) {
return MPI_Bcast(buffer, count, dt, 0 /* root */, MPI_COMM_WORLD);

}
return 0;

}

int
main(int argc, char* argv[]) {

for(int i=0; i < argc; i++) {
if(strcmp(argv[i], "-serial") == 0) {
mpi = false;

}
}
par_init(&argc, &argv);
fprintf(stderr, "i am %zu of %zu\n", par_rank(), par_size());
par_finalize();
return 0;

}

Listing 6: Example method for abstracting MPI calls so that a program
can also be run in serial mode without recompiling.

Through the use of the aforementioned environment variables and an
option like the ‘-serial’ one above, you should be able to benchmark
different components of your program independently.

11

	Scalability
	Part 1: Establishing Scalability
	Scripting
	The Bourne-Again SHell (bash)

	Strong scaling
	Creating .pbs files
	Generate n .pbs files
	Ensure the jobs run through the queue system
	Uniquely identify performance
	Collate performance numbers

	Submission

	Part 2: Competition
	Grading details
	Increased Resources
	Extras: isolating performance problems
	OpenMP
	MPI

