
Informatik und Angewandte Kognitionswissenschaft
Lehrstuhl für Hochleistungsrechnen

Rainer Schlönvoigt
Thomas Fogal

Prof. Dr. Jens Krüger

High-Performance Computing
http://hpc.uni-duisburg-essen.de/teaching/wt2013/pp-nbody.html

Exercise 1 - Serial N-Body (80 Points)

All assignments are to be uploaded to Moodle. Assignments are due at
midnight on the due date. No late assignments will be accepted.

All assignments must include a Makefile for compiling your assignments.
The assignment specification should include what the default target of your
makefile should be. Assignments which do not compile will receive 0 points.
Sometimes, we provide sample inputs and outputs; assignments which do not
satisfy these test inputs will receive very few points.

Please do not include additional output other than what was requested
by the assignment details. Hint: if you want more debugging output, use a
‘debug’ flag in your program’s arguments and have it only print when that flag
is active.

Your assignment will be graded on the duecray.uni-due.de super-
computer. It does not matter if your program runs correctly on another
machine; it must run correctly on duecray to receive credit.

1 N-Body Simulation

In this assignment your task will be to write a serial n-body-simulation to be
executed on a single processing unit.

1

http://hpc.uni-duisburg-essen.de/teaching/wt2013/pp-nbody.html
https://moodle2.uni-due.de/course/view.php?id=2945
https://www.gnu.org/software/make/manual/make.html


1.1 Quick Reminder

In an n-body-simulation we try to simulate the gravitational effects that
multiple objects have on each other. The necessary computational workload
grows very fast with the amount of objects. This is due to the fact that we
have to compute how every single object is being affected by every other
object.

Figure 1: Example

1.2 Relevance

In reality we should have to calculate the gravitational influence for every
possible point in time—a continuous variable. Since that isn’t possible on
computers, we have to settle for discrete timesteps. This assignment will be
the foundation for upcoming assignments. The calculations that have to be
done within every timestep offer themselves for parallelization and future
assignments will therefore be about adapting the code to be executed in
parallel. Having a proper architecture to begin with will save you time in the
future. In later assignments there will be less information provided.

2



1.3 Overview

Figure 2 might be helpful to give you a better understanding of what needs
to be done.

Figure 2: Overview

3



2 Input File Format

The input files that your simulation must read follow the format given in
Listing 1:

1 5, 30000000, 0.5, 0.00001, 1,
2 1, 1, 1, 20000000
3 1000, 1000, 1000, 200000000
4 -1000, -1000, -1000, 200000000
5 -15000, 2000, 0, 900000000
6 1500, -1500, 0, 70000000

Listing 1: Simple input file.

The very first line consists out of configuration parameters. In order, these
are:

1. the total amount of objects

2. an “end time criterion” at which to stop the simulation

3. a value δ by which to normalize ∆t (more in 3.2)

4. an alternative ∆t (more in 3.2)

5. a minimum distance to use in the simulation (more in 3.1)

Every line afterwards describes one object with its x-, y-, z-coordinates
and its weight.

3 Iterator

Once reading and writing files works, we can take a look at the main part
of your program; You will have to write code that starts and executes the
iteration loop. What we want to calculate is where every object is going to
be after every iteration step. For a hint at the necessary steps take another
look at Figure 2. Some of those steps require additional precautions, which
are described in this section.

3.1 Calculate new acceleration

The basics of this step are causing most of the necessary computational load.
You will have to calculate the acceleration that every object will be affected
by during the current timestep. To get this total acceleration of one object

4



you will have to accumulate the acceleration influence of all other objects on
your current object.

~~pi = G

N∑
j=0|j 6=i

mj(pj − pi)
‖pj − pi‖3

(1)

Note that ‖var‖ is the vector norm1 of the vector var.
Unfortunately the formula gets very instable for distances near zero. To

counter unwanted side effects, the configuration data of the input file contains
a minimum distance. Should your objects be closer than this distance, use
the minimum distance instead.

Keep in mind that the acceleration is a vector and therefore has a magni-
tude and a direction.

3.2 Update the current time

As mentioned before, we can only work in discrete timesteps. Choosing
the right size is very important. Fast objects or objects receiving a strong
acceleration need very small timesteps or the results will become inaccurate.
Slow objects on the other hand are less time-critical.

To make things a little simpler we are going to use the same ∆t for all
objects. Each individual ∆t is being calculated using the following formula:

∆ti = δ ×min(
1

‖~pi‖
,

1√
‖~~pi‖

)

Do not perform a division by zero when the acceleration or the velocity is
zero! If that is only the case for one of the two, simply use the other one. In
the extremely unlikely case, that both speed and acceleration are zero, use
the alternative ∆t supplied in the input file.

Due to difficulties in this part of the assignment, we have de-
cided to allow an alternative time implementation. The alternative
is simply to use a constant ∆t for the entire simulation run. If you
would like to use this simplified implementation, then the third

1 https://en.wikipedia.org/wiki/Norm_(mathematics)#Euclidean_
norm
https://de.wikipedia.org/wiki/Vektor#L.C3.A4nge.2FBetrag_eines_
Vektors

5

https://en.wikipedia.org/wiki/Norm_(mathematics)#Euclidean_norm
https://en.wikipedia.org/wiki/Norm_(mathematics)#Euclidean_norm
https://de.wikipedia.org/wiki/Vektor#L.C3.A4nge.2FBetrag_eines_Vektors
https://de.wikipedia.org/wiki/Vektor#L.C3.A4nge.2FBetrag_eines_Vektors


value of your input file (in Listing 1, this would be 0.5) can be used
as the amount to step the time. In this case, your ‘time’ loop is
simply as given in Listing 2. In that example, ‘increment’ is the
third value of the input file.

for(float time=0.0f; time < end_time_criterion; time += increment) {
...

}

Listing 2: Outer simulation loop.

3.3 Calculate new speed, average speed and position

The integration scheme we will use for this course is similar to leapfrog
integration, with some small modifications to make it easier to calculate.

a = F (...) (2)

vi+1 = vi + a∆t (3)

xi+1 = xi + vi+1∆t (4)

F is simply a function which computes Equation 3.1 from earlier.

4 File Handler

We will supply you with some example input and output files. Your first step
should be to write

• a simple data structure in which to keep the data stored in the input files,

• code that helps you with reading the input files and

• code that helps you with writing your results back out into a file.

5 Output Format

You will need some way to verify your code is working as expected. For
that, your program should output a CSV (comma-separated values) file for a
timestep. You do not necessarily need to output every timestep—this will

6



create more output than you can reasonably analyze. More details on CSV
files can be found by searching the web, but they are simple; your CSV file
should have the following format:

x, y, z, scalar-name, scalar-name, scalar-name, ...
X0, Y0, Z0, scalar1, scalar2, scalar3, ...
X1, Y1, Z1, scalar1, scalar2, scalar3, ...
X2, Y2, Z2, scalar1, scalar2, scalar3, ...
X3, Y3, Z3, scalar1, scalar2, scalar3, ...

Listing 3: CSV output file format

where X0, Y 0, Z0 gives the location of a particle, and scalar1, scalar2,
usw. are associated scalar values. Note that it is important to output a space
after the comma! Scalar values can be anything, but should be consistent:
every line should have the same number of values, and a column should have
the same meaning within each line. Examples of variables you might want to
include are the particle’s velocity and/or acceleration. Note these are both
vectors, but just as the 3-component position was written out as X0, Y0,
Z0, other 3-component variables can be output as 3 separate scalars.

The first line of this file is a ‘header’ line, which simply gives a name to
each column. You must have a name for every field, otherwise common tools
will not be able to read the file; likewise, you cannot have more fields in the
header than you have in the actual file.

In most cases, these values should be floating point numbers. You can
output them using (e.g.) “%7.4f” in your C program.

As a concrete sample of the output format, see Listing 4. This file describes
4 particles, each with 3 associated scalars (presumably the 3 components of
the particle’s velocity).

x, y, z, vx, vy, vz
07.3713, 0.3218, 3.1043, 1.1833, 2.0134, 2.2291
10.2746, 26.4729, 70.5028, 8.0630, 8.4932, 6.0171
02.2911, 09.1276, 10.8019, 6.3234, 1.1237, 15.5061
24.1717, 10.4758, 15.2072, 2.0334, 4.7838, 101.1451

Listing 4: Sample CSV output file

If the file describes (z.B.) timestep 164, and thus it would make sense to
store in a file named “164.csv”.

6 sine qua non

Pack your file into a single compressed tarball for submission. The tarball
should extract all files into a single subdirectory. Upload your tarball to

7

https://en.wikipedia.org/wiki/Tar_(file_format)


Moodle.

8

https://moodle2.uni-due.de/course/view.php?id=2945

	N-Body Simulation
	Quick Reminder
	Relevance
	Overview

	Input File Format
	Iterator
	Calculate new acceleration
	Update the current time
	Calculate new speed, average speed and position

	File Handler
	Output Format
	sine qua non

