
Informatik und Angewandte Kognitionswissenschaft
Lehrstuhl für Hochleistungsrechnen

Thomas Fogal
Prof. Dr. Jens Krüger

High-Performance Computing
http://hpc.uni-due.de/teaching/wt2014/nbody.html

Exercise 4 (80 Points)

All assignments should be pushed to your personal Git repository. As-
signments are due at midnight on the due date. No late assignments will be
accepted.

All assignments must include a makefile for compiling your assignments.
Assignments which do not compile will receive 0 points. Assignments that do
not satisfy the test inputs will receive 0 points.

Please do not include output other than what was requested by the
assignment details.

Your assignment will be graded on the duecray.uni-due.de super-
computer. It does not matter if your program runs correctly on another
machine; it must run correctly on duecray to receive credit.

1 Introduction

In this assignment you will introduce OpenMP-based parallelism into your
N-Body simulation. The primary objective is to accelerate the computation
when there are a large number of particles.

Some students may be able to implement this assignment using a couple
lines of code and some makefile hackery. Good for you! I would encourage
you to spend your time cleaning up any loose ends, beginning to evaluate
the performance of your simulation, and, most importantly, verifying the
correctness of your simulation. Correctness has a profound implication on
your grade; performance does not (yet).

1

http://hpc.uni-due.de/teaching/wt2014/nbody.html
http://www.git-scm.org/
https://www.gnu.org/software/make/manual/make.html


1.1 Message passing vs. shared memory

OpenMP is based on a shared memory model. This is in strict contrast to
the distributed memory model that MPI allows. The separate threads of
execution within a shared memory model execute within the same address
space. This means you do not need to ‘send’ and ‘recv’ information: each
executing thread can just access the chunk of memory directly.

The aspects of OpenMP that we will use in this course follow the ‘fork-join’
model. The general idea is that execution of your program is predominantly
serial in nature. At designated points within your code, the process will ‘fork’
a number of threads that will operate on some subset of data. Each thread
will proceed until a ‘join’ point, where all threads wait and eventually collapse,
leaving just one thread remaining. That serial thread continues until the
next ‘fork’ location. The contrast to this and the MPI model is displayed in
Figure 1.

Figure 1: MPI vs OpenMP

2



1.2 OpenMP directives

OpenMP usage is enabled with the use of compiler directives, notably
#pragma. These directives provide annotations that detail how OpenMP
may parallelize nearby code. However, as they are compiler directives, a
simple switch in your compiler can disable or enable OpenMP—a feature
many find useful when testing.

All OpenMP directives start with #pragma omp; we will generally omit
this prefix when discussing them. The simplest directive is simply parallel:
it indicates the the block immediately below should be executed by all threads.
Listing 1 gives the OpenMP equivalent of “Hello, world”.

#include <stdio.h>
int main() {

#pragma omp parallel
{

printf("Hello, world\n");
}
return 0;

}

Listing 1: OpenMP “Hello world”.

When executed, Listing 1 will print out “Hello, world” for each thread
executing the program. Generally, this is equal to the number of cores your
system has. However, you can modify this by setting the OMP NUM THREADS
environment variable.

$ export OMP_NUM_THREADS=3
$ ./a.out
Hello, world
Hello, world
Hello, world

Listing 2: Using OMP NUM THREADS to influence how many threads
OpenMP utilizes.

However, OpenMP users generally utilize the for directive to indicate
that the following loop should be parallelized. for will divide the loop
bound by the number of threads, and manipulate the indices for each thread
so that it executes a contiguous subset of those indices. Take Listing 3 as
an example: this computes the linear combination of two arrays with their
associated constants. If you removed the #pragma, the code would still be
correct. With the pragma, each thread will execute n / OMP NUM THREADS
iterations of the loop.

3



void lincomb(const float* x, const float* y, size_t n, float a, float b,
float* out) {

#pragma omp parallel for
for(size_t i=0; i < n; i++) {

out[i] = a*x[i] + b*y[i];
}

}

Listing 3: OpenMP-parallelized for loop

Linear combination is an example of a parallel problem that is deemed
trivially parallelizable. One might think of this as meaning that the iterations
of the loop are independent: one does not need the side effects of iteration
i-1 to be able to compute iteration i (or any other iteration). These are
the most fruitful computations to parallelize, because they do not require any
synchronization.

1.3 Compilation and linking

OpenMP can be enabled or disabled simply by recompiling with different
options. The GNU compiler turns OpenMP off by default. To switch it
on, you need to compile and link with the -fopenmp flag. You should
thus add this flag to both your CFLAGS and LDFLAGS variables in your
makefile. To ensure your are correctly using OpenMP, you might want to use
print nthreads from program 4. If it says you are running on 1 thread,
then something is wrong.

#include <stdio.h>
#include <omp.h>

static void print_nthreads(const char* program) {
#pragma omp parallel
{

size_t n = omp_get_num_threads();
if(omp_get_thread_num() == 0) {
printf("%s is running with %zu threads.\n", program, n);

}
}

}

int main(int argc, char* argv[]) {
(void)argc;
print_nthreads(argv[0]);
return 0;

}

Listing 4: Example program to print out the number of threads an OpenMP
program is using.

As always, make sure you module swap PrgEnv-pgi PrgEnv-gnu
on our Cray before compiling.

4



2 Hybrid MPI/OpenMP

Your assignment is to implement a hybrid MPI/OpenMP N-Body simulation.
This simulation should use shared memory (OpenMP) for intra-node com-
munication, and distributed memory (MPI) for inter-node communication.
Figure 2 outlines the hybrid approach that you should implement.

Figure 2: MPI/OpenMP hybrid parallel approach.

Be sure to test your simulation with multiple settings for both the number
of nodes as well as the number of threads on each node. Your hybrid parallel
simulation should produce the same results as your serial simulation, to within
a factor of 0.0001 or so.

3 sine qua non

As always, submit your assignment by committing your code to your personal
repository. Every assignment utilizes a new repository. The name for this
assignment is as4-username , where username is your name on our git
server.

All assignments must include a makefile to compile your program. No
makefile, no points!

5


	Introduction
	Message passing vs. shared memory
	OpenMP directives
	Compilation and linking

	Hybrid MPI/OpenMP
	sine qua non

