Informatik und Angewandte Kognitionswissenschaft
Lehrstuhl fiir Hochleistungsrechnen

UNIVERSITAT
IIEUs ISSENU RG
Open-Minded

Thomas Fogal
Prof. Dr. Jens Kriiger

High-Performance Computing
http://hpc.uni-due.de/teaching/wt2014 /nbody.html
.

10 MINUTES LATER

-

PROGRAMMING IN A NUTSHELL

" e
ae
MAN, ILL NEVER
FIGURE THIS BUG ¢
ouT.

Man, ILL NEVER |
FIGURE THIS BUG
ouT.

10 MINUTES LATER

THREEFANELSDUL.com matihew boyd - Fam mecanville

Exercise 6 (100-512 Points)

1 “Choose your own adventure”

The final project is your choice! We have talked about many aspects of
high-performance computing, mostly centering on data organization and
communication. In the coming weeks we will discuss topics such as scalability,
floating point issues, 10, sequential /temporal consistency and the memory
wall. Of course, there are many topics in parallelism and high-performance
computing that we simply will not have time to discuss. This is your chance
to bring all of these aspects together as well as pursue something that you
wish we covered in the course.


http://hpc.uni-due.de/teaching/wt2014/nbody.html

You must propose your own work for the final project. I give a few ideas
below that you may steal if you are completely at a loss. However, I hope that
you will create your own project or propose a variant on something below.

Your proposal will go through two stages. This allows us to review and
revise your project before you are committed to it.

The first version of your proposal is due on January 20th. The second
version is due on January 27th. I encourage you to discuss your topic with
me informally, but I need to receive something in writing on those dates.

Do not sweat the writing much; you are not graded on it. It can be as
simple as a few bullet points, if your idea can be communicated succinctly.

Your assignment does not need to have anything to do with n-body
simulations, and using your old code is entirely optional. You should work
in groups, but there must be a very clear delineation of work so that grades
can be individually assigned. Each group member must submit their own
proposal.

Make sure your proposal covers at least these topics:

e What it is you intend to implement.

e A list of risks or problems (things you do not already know how to do;
new libraries that you will use; potential performance problems that
might impede progress; etc.) and what resources exist for mitigating
those risks.

e How long this will take to implement versus how much time you have
available.

e Final artifacts (scalability graphs, images, test cases that can easily be
run, or even a write-up about your project) that can be used to evaluate
your work.

e The number of points it should be worth (between 100 and 512), in-
cluding justification.

e The parts you are responsible for and the parts your partner[s] are
responsible for.

You get to choose how important this project is to your grade. Your
proposal must also include the number of points the assignment



will be worth. The number of points can range from 100 to 512. Note that
the other assignments totalled 365 points.
Projects will be due on February 23rd, 2015.

2 Project Ideas

2.1 Barnes-Hut acceleration

In n-body simulations with many particles, it often turns out that a large
set of particles group together. If we are looking at the force on any one
particular particle, then, it will mainly be influenced by the particles in its
‘local group’. Particles in distant groups or just distant particles alone will
have very little impact on a particle’s trajectory.

Some smart people realized this long before us, of course, and decided to
take advantage of this fact to accelerate the computation. Those people were
Josh Barnes and Piet Hut, and the result is the ‘Barnes-Hut’ algorithm:

https://de.wikipedia.org/wiki/Barnes—-Hut—-Algorithmus

The basic idea is to impose a tree on the domain. The tree will group
particles that are ‘close’; each node will represent some region of space, with
leaves containing particles, and internal nodes representing groups of particles
that are close together. When computing the acceleration on any given
particle, one then traverses the tree as deep as makes sense—comparing the
particle’s position to the region of space that the current node of the tree
represents—and accumulates acceleration as normal. When accumulating
from an internal node, one uses the averages of all the particles in that region.

Your task would be to implement the Barnes-Hut algorithm in your n-body
simulation, and characterize the performance benefit.

Warning: this is a ‘data structures’-heavy task. If you have never
implemented a tree before, be wary, and if you have significant trouble with
pointers, be very wary.

2.2 MPI error detection

As you have no doubt realized, writing correct MPI programs is difficult. Each
MPI function takes a number of parameters, and it is easy to set them wrong.
It is almost impossible for errors to be caught at compile-time. Furthermore,


https://de.wikipedia.org/wiki/Barnes-Hut-Algorithmus

errors at execution time manifest in difficult-to-understand ways. For example,
consider the code in Listing 1:

int sz;

MPI_Comm_size (MPI_COMM_WORLD, &sz);

for(size_t i=0; i < (size_t)sz; i++) {
MPI_Send(v, n, MPI_INT, i, 42, MPI_COMM_WORLD) ;

}

Listing 1: Example loop that might be seen in a naive broadcast

implementation. The loop has an error that can be difficult to debug.

This code has a subtle bug: since the code does not check which MPI
process is running the code, it will send to all MPI processes. When it tries
to send to itself, it cannot setup a receive and will therefore deadlock.

Understanding what is happening and fixing the deadlock can be diffi-
cult. The situation could be considerably simpler, if the implementation of
MPI _Send started with:

int MPI_Send(voidx buf, int n, MPI_Datatype type, int dest, int tag,
MPI_Comm comm) {
int rank;
MPI_Comm_rank (MPI_COMM_WORLD, &rank);
if (dest == rank) {
abort () ;
}

Listing 2: Sample MPI Send implementation that detects the
aforementioned error.

What other errors could such an implementation detect?

In this project, your task would be to implement a subset of MPI that
does more extensive parameter validation than most MPI libraries. You
would create a library that implements some of the standard MPI functions;
an ‘mpicc’ wrapper that invokes gcc and forces said library to be linked
in; and a limited ‘mpirun’ that only accepts an —np (number of processors)
parameter of 2. To communicate, your library would use TCP sockets under
the hood.

2.3 Conway’s Game of Life

In 1970 John Conway simplified an idea originally given by John von Neumann
and thereby invented the field of cellular automata. The “game” he proposed
was actually a simulation in which the “player” (I use these terms loosely)
has control over only the initial state.



The game is played on a grid of cells. Each cell has binary state: it is
either ‘on’ or ‘oft’; sometimes referred to as ‘alive’ or ‘dead’. Every successive
iteration of the simulation proceeds by the following rules:

e if the cell is ‘alive’:

— if it has <1 ‘alive’ neighbors, that cell dies.
— if it has > 4 ‘alive’ neighbors, that cell dies.

— if it has 2 or 3 neighbors, it lives to the next iteration.

o if the cell is ‘dead”
— if it has exactly 3 ‘alive’ neighbors, it becomes ‘alive’.

Expressed in pseudo-code, the rules are something like this:

for y from 0 to dims[1]:
for x from 0 to dims[0]:
switch (live_neighbors (grid[x,y])):
case 0:

case 1: kill(grid[x,y]); break;

case 2:

case 3:
if (deadp (grid[x,y])) { resurrect (grid[x,y]); }
break;

default:
if (alivep(grid(x,y])) { kill(gridlx,yl); }

Listing 3: Conway’s game of life.

Your task is to write a simulation that takes an initial state and an
iteration number, and outputs the state of the system after the given number
of iterations. For the edge cases where x, y lie off of the defined grid, consider
them to always be ‘dead’.

Of course, you need to accelerate this by doing it in parallel. To do this,
you will need to give every process a portion of the grid which it is ‘responsible’
for. Calculating 1ive_neighbors is difficult at the boundaries of grids: the
current process does not know the status of neighboring processes’ grid cells.
You will need to communicate to exchange this information.

2.4 Steady state relaxation

In many engineering disciplines, one is interested with identifying the ‘steady
state’ of a system given an initial state. As a very simple example: if we drop
a ball from some height, it falls and eventually hits the ground. For some



Jemet ]
08
07
06
05

e
04
03
0z
o1

R X =1

Figure 1: Heat transfer problem example. At the bottom, where ¢« = X, the
boundary has a constant high heat (1.0). The heat dissipates to neighboring
areas and eventually reaches a steady state like the one depicted here. On
the right side, a grid is overlayed on the domain; simulations calculate the
temperature at each grid point.

period of time, it may bounce and roll around a bit, but eventually the ball
comes to rest and will not move until we apply some new external force to it.
In this situation, the initial state is where we dropped the ball from and the
steady state is the final resting location of the ball.

One common application of this idea is to identify the final tempera-
ture of a given region, given an initial state and boundary conditions. An
example boundary condition might be that the left side of the simulation
domain remains at a constant 100°C. The solution would be the temperature
distribution when things stabilize.

The mathematics for solving such a system can be as simple as averaging
adjacent grid points. If we consider a 2D case, we take the domain and
discretize it by choosing where to place grid points, as in the right side of
Figure 1. Let’s refer to the field on the left side as U, and the discretized
version (on right) as u. Then we might speak of u at a particular grid point
(z,y), thus: u,,. With this notation the evolution of this steady state problem
is simply:

e Uy gyt Upiqy+Up g T UL, (1)
T,y 4
where u" represents u at timestep n.

To solve such a problem, we initialize all the grid points of u, set n = 0,
and then solve for n + 1 everywhere. u' then becomes the input to solve for
u?, etc. The process continues until u'*! is so close to u’ that there is, for all
practical purposes, no real difference. Of course, there are issues at the grid
boundaries: if (x — 1) is —1, then we will ask for the value at u_;,, which

6



is invalid. In Figure 1, the boundary conditions are: if x = X and y = —1,
then 0.1. Otherwise, 0.0.

Your task is to create a parallel solver for such heat problems. As in the
cellular automata (game of life) example, you will need to assign sets of grid
points to different processors and exchange information at boundaries. The
output would be a file that contains the temperature at every grid point.

2.5 Visualization

Earlier, I provided a script that will take one of your output CSV files and
create a rudimentary visualization using ParaView. These visualizations
are enough for you as a simulation author to see what is happening, but
ultimately not very satisfying—in part due to their simplicity.

In this project, your task is to create more compelling visualizations,
using considerably more particles and timesteps. You will perform some
sort of ‘interesting’ simulation run: perhaps setting up particles in the same
formation as bodies in our solar system, or as just a random ‘galaxy’ that you
invent and think is interesting. Then you will run your simulation to produce
a number of CSVs to use for creating a visualization. The end result should
be a movie that depicts the evolution of the simulation run you put together.

Your proposal should include at least two aspects: some aspect of paral-
lelism, either in your simulation or by using ParaView in parallel, and some
method(s| to improve the visualizations. Consider how color and transparency
might help, for example, or lines for particle trajectories, etc.

3 sine qua non

Assignments are due at midnight on the due date.

Your assignment will be graded on the duecray.uni-due.de super-
computer. It does not matter if your program runs correctly on another
machine; it must run correctly on duecray to receive credit.



	``Choose your own adventure''
	Project Ideas
	Barnes-Hut acceleration
	MPI error detection
	Conway's Game of Life
	Steady state relaxation
	Visualization

	sine qua non

